MATH 504 HOMEWORK 4

Due Monday, March 1.

Problem 1. Suppose that κ is a regular uncountable cardinal and that F: $\kappa \to \kappa$ is a function. Show that $\{\gamma < \kappa \mid \forall \alpha < \gamma(F(\alpha) < \gamma)\}$ is a club subset of κ .

Problem 2. Suppose that κ is a regular uncountable cardinal.

- (1) Suppose that C is a club in κ and S is a stationary subset of κ . Show that $C \cap S$ is also stationary.
- (2) Suppose κ is inaccessible. Show that $\{\tau < \kappa \mid \tau \text{ is a cardinal}\}$ is a club in κ .

Problem 3. (1) Show that for all $\alpha \leq \omega$, $L_{\alpha} = V_{\alpha}$.

- (2) Show that for all α , $L_{\alpha} \subset V_{\alpha}$ and if $\alpha \geq \omega$, then $|L_{\alpha}| = |\alpha|$.
- (3) Show that for all $\alpha \geq \omega$, $L_{\alpha} \cap Ord = \alpha$ (hint: use induction on α).

Problem 4. Show that if κ is a regular uncountable cardinal in L, then L_{κ} satisfies all the axioms $ZF \setminus$ Powerset with the exception of Comprehension. (Actually, L_{κ} also satisfies Comprehension, but I will show that in class.)

Problem 5. Suppose that $M \prec L_{\omega_1}$. Show that M is transitive. (Hint: for $X \in M$, take the \prec_L -least onto $f : \omega \to X$. Show that f is definable in L_{ω_1} from X and use this to show that $f \in M$. Also show $\omega \subset M$. Use these to prove that range of f is a subset of M)